药敏试验是什么意思| 什么是欲望| 2月2日是什么星座| 寒号鸟是什么动物| 手指关节疼痛挂什么科| 8岁属什么| 什么的季节| 魇是什么意思| 九五年属什么| bp在医学上是什么意思| 四史指的是什么| 农村适合养殖什么| 吃什么降尿酸最有效食物| 查电话号码打什么电话| 什么是血糖| 东北大拉皮是什么做的| 犬瘟是什么原因引起的| 悲戚是什么意思| 什么是被子植物| 耳浴是什么意思| 婵字五行属什么| 阴阳两虚用什么药| 颈部淋巴结肿大挂什么科| 钩藤为什么要后下| 脖子上长个包挂什么科| 太原有什么特产| 吃什么化痰| 八纲辨证中的八纲是什么| 眼袋大是什么原因引起的| 包茎是什么意思| 口腔溃疡吃什么| 喝山楂泡水有什么功效| TA什么意思| 有样学样是什么意思| 牙齿痛什么原因| 嗷嗷待哺是什么意思| 女人吃当归有什么好处| 藕什么季节成熟| 男生13厘米属于什么水平| 甲亢病有什么症状| 盛情难却是什么意思| 阉了是什么意思| 全血铅测定是什么意思| 尿路感染吃什么药最见效| 公鸡的尾巴有什么作用| 女人吃什么补气血| 舌头根发麻是什么原因| 脐橙什么意思| 吹泡泡什么意思| 尼泊尔属于什么国家| 10月19是什么星座| 消化不良吃什么| 蔚姓氏读什么| 胃切除手术后吃什么好| 胆固醇低吃什么| 经常放屁是什么原因| 撕脱性骨折什么意思| 肋骨外翻是什么原因| mnm是什么单位| 日落是什么时辰| 夏吃姜有什么好处| as是什么材质| 居家是什么意思| 减脂喝什么茶最有效| 独一无二是什么生肖| 321是什么意思| 性是什么| 玉米什么时候打药| color是什么意思| 乳糖酶是什么东西| hairy什么意思| 什么情况下做肾穿刺| 女生无缘无故头疼是什么原因| 1月什么星座| 什么食物补气血| 肺结核是什么原因引起的| 百什么争鸣成语| 药流后吃什么消炎药| 久经沙场是什么意思| 血用什么可以洗掉| 常吃黑芝麻有什么好处和坏处| 放血有什么好处| 痰饮是什么意思| 引什么大什么| 治飞蚊症用什么眼药水| 中老年人吃什么钙片好| 烂脚丫用什么药能治除根| 茴香豆是什么豆| 早谢是什么症状| 吃什么缓解孕吐| 过去式加什么| 10.1是什么星座| 脚酸臭是什么原因| 罗勒是什么| 10月1日是什么日子| 左下腹疼痛是什么原因女性| 伟岸一般形容什么人| viola是什么意思| 吃什么皮肤变白| 什么发型适合自己| 急性肠胃炎是什么引起的| 君是什么意思| 多吃丝瓜有什么好处和坏处| 中性人是什么意思| 撸是什么意思| 人少了一魄什么反应| 老鼠爱吃什么| 心脏不好吃什么水果好| 孕妇腹泻可以吃什么药| 沉疴是什么意思| 指甲有凹陷是什么原因| 蛇用什么呼吸| 追光是什么意思| 娘惹是什么意思| 三生三世是什么意思| 茯苓的功效与作用是什么| 夏天能干什么| 燕条和燕盏有什么区别| 为伊消得人憔悴什么意思| 维生素吃多了有什么副作用| lga是什么意思| 便秘喝什么茶最快排便| fdp偏高是什么原因| 自动化是干什么的| 烂好人什么意思| 木字旁的有什么字| 牛肉跟什么炒好吃| 全飞秒手术是什么| 疱疹用什么药可以根治| 牙釉质是什么| 孕中期同房要注意什么| 梦见搞卫生什么意思| 什么是肝掌| 规格什么意思| 什么颜色属金| 数脉是什么意思| 舌头下面的筋叫什么| 1964年属什么| 男生一般什么时候停止长高| 壅是什么意思| 七月八号是什么星座| 带状疱疹可以吃什么水果| 双肺间质性改变是什么意思| 取其轻前一句是什么| 狗有眼屎是什么原因| 前置胎盘需要注意什么| 头汗特别多是什么原因| 空亡是什么意思| 印度总统叫什么名字| 双肺纹理粗重什么意思| 水珠像什么| 什么东西最贵| 甘胆酸偏高是什么原因| cp感什么意思| 冬天手脚冰凉是什么原因怎么调理| 白玉蜗牛吃什么| 脚出汗用什么药| 空调什么时候发明的| 三观不合指的是什么| cool什么意思中文| 看病人带什么水果| 热伤风吃什么药| 睾丸扭转是什么导致的| 边缘视力是什么意思| 三月六日是什么星座| 申的五行属什么| 唐氏筛查是什么检查| 单人旁的字有什么| mlb是什么意思| 画龙点晴是什么生肖| 大庭广众什么意思| 香叶是什么树的叶子| 阳虚和阴虚有什么区别| 晚上喝什么茶好| 染色体由什么和什么组成| 2005年是什么命| camellia是什么意思| 羡煞旁人是什么意思| guess是什么品牌| 矫枉过正什么意思| 肝胃不和吃什么药| 干碟是什么| 梦见修路是什么预兆| wbc是什么| 月经不调吃什么药效果好| 12年是什么年| 关节痛挂号挂什么科| 89年属什么生肖| 什么东西天气越热它爬得越高| 骑马挥杆是什么牌子| 突然戒烟对身体有什么影响| 女朋友的妹妹叫什么| 宫内早孕什么意思| 乌鸦嘴是什么意思| 媞是什么意思| 大肠杆菌感染吃什么药| 小孩血压低是什么原因| 胃下垂吃什么药| 梦见财神爷是什么预兆| 桑是什么意思| nmr是什么意思| 泡什么喝可以降血糖| 打白条是什么意思| wl是什么意思| 什么水果糖分最低| bea是什么意思| 乙肝是什么病严重吗| 月经量少吃什么调理| 肝痛在什么位置| 最毒妇人心是什么意思| 假体是什么| 别开生面什么意思| 10月4日是什么星座| 翰字五行属什么| 早搏吃什么药效果好| 胸痒痒是什么原因| 海豹是什么动物| 不什么不| 及第是什么意思| 一什么大厦| 什么族不吃猪肉| 颞颌关节紊乱挂什么科| 额头老出汗是什么原因| 学无止境是什么意思| 礼佛是什么意思| 丽珠兰是什么| 养胃吃什么最好| 孔雀喜欢吃什么食物| 血压低吃什么| 二进宫是什么意思| 面部痉挛吃什么药| 迷妹是什么意思| 服饰是什么意思| 胃胀吃点什么药| 十月什么星座| 高尿酸血症吃什么药| 预拌粉是什么东西| 孕妇可以吃什么零食| 千克又叫什么| 什么的朝霞| 溶栓治疗是什么意思| 猥琐男是什么意思| 更年期什么时候开始| 凉皮用什么面粉| 什么牌子的氨基酸洗面奶好| 加德纳菌阳性是什么意思| 吐信子是什么意思啊| 身上起疙瘩是什么原因| 肝气不舒吃什么中成药| 鱼肝油又叫什么名字| 骨盐量偏高代表什么| 炉甘石是什么东西| 眼镜蛇为什么叫眼镜蛇| 材料化学属于什么类| 身上很痒是什么原因| 水马是什么| 到底什么是爱| 糖尿病是什么症状| 下巴痘痘反复长是什么原因| 武火是什么意思| 附件炎是什么引起的| 1945年属什么生肖| 净身出户是什么意思| 大米为什么会生虫| 百度

【专题】中国共产党承德市第十四次代表大会

百度 在世界自然保护联盟(IUCN)对自然保护地的分类中,国家公园属于第二类。

The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation (from mass distribution within Earth) and the centrifugal force (from the Earth's rotation).[2][3] It is a vector quantity, whose direction coincides with a plumb bob and strength or magnitude is given by the norm .

Earth's gravity measured by NASA GRACE mission, showing deviations from the theoretical gravity of an idealized, smooth Earth, the so-called Earth ellipsoid. Red shows the areas where gravity is stronger than the smooth, standard value, and blue reveals areas where gravity is weaker.[1]

In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s2 or m·s?2) or equivalently in newtons per kilogram (N/kg or N·kg?1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s2 (32 ft/s2). This means that, ignoring the effects of air resistance, the speed of an object falling freely will increase by about 9.8 metres per second (32 ft/s) every second.

The precise strength of Earth's gravity varies with location. The agreed-upon value for standard gravity is 9.80665 m/s2 (32.1740 ft/s2) by definition.[4] This quantity is denoted variously as gn, ge (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s2 (32.087686258 ft/s2)),[5] g0, or simply g (which is also used for the variable local value).

The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the object. Gravity does not normally include the gravitational pull of the Moon and Sun, which are accounted for in terms of tidal effects.

Variation in magnitude

edit

A non-rotating perfect sphere of uniform mass density, or whose density varies solely with distance from the centre (spherical symmetry), would produce a gravitational field of uniform magnitude at all points on its surface. The Earth is rotating and is also not spherically symmetric; rather, it is slightly flatter at the poles while bulging at the Equator: an oblate spheroid. There are consequently slight deviations in the magnitude of gravity across its surface.

Gravity on the Earth's surface varies by around 0.7%, from 9.7639 m/s2 on the Nevado Huascarán mountain in Peru to 9.8337 m/s2 at the surface of the Arctic Ocean.[6] In large cities, it ranges from 9.7806 m/s2 [7] in Kuala Lumpur, Mexico City, and Singapore to 9.825 m/s2 in Oslo and Helsinki.

Conventional value

edit

In 1901, the third General Conference on Weights and Measures defined a standard gravitational acceleration for the surface of the Earth: gn = 9.80665 m/s2. It was based on measurements at the Pavillon de Breteuil near Paris in 1888, with a theoretical correction applied in order to convert to a latitude of 45° at sea level.[8] This definition is thus not a value of any particular place or carefully worked out average, but an agreement for a value to use if a better actual local value is not known or not important.[9] It is also used to define the units kilogram force and pound force.

Latitude

edit
 
The differences of Earth's gravity around the Antarctic continent.

The surface of the Earth is rotating, so it is not an inertial frame of reference. At latitudes nearer the Equator, the outward centrifugal force produced by Earth's rotation is larger than at polar latitudes. This counteracts the Earth's gravity to a small degree – up to a maximum of 0.3% at the Equator – and reduces the apparent downward acceleration of falling objects.

The second major reason for the difference in gravity at different latitudes is that the Earth's equatorial bulge (itself also caused by centrifugal force from rotation) causes objects at the Equator to be further from the planet's center than objects at the poles. The force due to gravitational attraction between two masses (a piece of the Earth and the object being weighed) varies inversely with the square of the distance between them. The distribution of mass is also different below someone on the equator and below someone at a pole. The net result is that an object at the Equator experiences a weaker gravitational pull than an object on one of the poles.

In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s2 at the Equator to about 9.832 m/s2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator.[2][10]

Altitude

edit
 
Earth's gravity vs. distance from it, from the surface to 30000 km
 
Earth vs Mars vs Moon gravity at elevation

Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%. An additional factor affecting apparent weight is the decrease in air density at altitude, which lessens an object's buoyancy.[11] This would increase a person's apparent weight at an altitude of 9,000 metres by about 0.08%.

It is a common misconception that astronauts in orbit are weightless because they have flown high enough to escape the Earth's gravity. In fact, at an altitude of 400 kilometres (250 mi), equivalent to a typical orbit of the ISS, gravity is still nearly 90% as strong as at the Earth's surface. Weightlessness actually occurs because orbiting objects are in free-fall.[12]

The effect of ground elevation depends on the density of the ground (see Local geology). A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea. However, a person standing on the Earth's surface feels less gravity when the elevation is higher.

The following formula approximates the Earth's gravity variation with altitude:

Calculator
Re 6,371.00877 km
g0 9.80665 m/s2
h 0 km
gh 9.80665 m/s2
 

where

The formula treats the Earth as a perfect sphere with a radially symmetric distribution of mass; a more accurate mathematical treatment is discussed below.

Depth

edit
 
Gravity at different internal layers of Earth (1 = continental crust, 2 = oceanic crust, 3 = upper mantle, 4 = lower mantle, 5+6 = core, A = crust-mantle boundary)
 
Earth's radial density distribution according to the Preliminary Reference Earth Model (PREM).[13]
 
Earth's gravity according to the Preliminary Reference Earth Model (PREM).[13] Two models for a spherically symmetric Earth are included for comparison. The dark green straight line is for a constant density equal to the Earth's average density. The light green curved line is for a density that decreases linearly from center to surface. The density at the center is the same as in the PREM, but the surface density is chosen so that the mass of the sphere equals the mass of the real Earth.

An approximate value for gravity at a distance r from the center of the Earth can be obtained by assuming that the Earth's density is spherically symmetric. The force of gravity at a radius r depends only on the mass inside the sphere of that radius. All the contributions from outside cancel out as a consequence of the inverse-square law of gravitation. Another consequence is that the gravity is the same as if all the mass were concentrated at the center. Thus, the gravitational acceleration at this radius is[14]

 

where G is the gravitational constant and M(r) is the total mass enclosed within radius r. This result is known as the Shell theorem; it took Isaac Newton 20 years to prove this result, delaying his work on gravity.[15]:?13?

If the Earth had a constant density ρ, the mass would be M(r) = (4/3)πρr3 and the dependence of gravity on depth would be

 

The gravity g′ at depth d is given by g′ = g(1 ? d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ0 at the center to ρ1 at the surface, then ρ(r) = ρ0 ? (ρ0 ? ρ1) r / R, and the dependence would be

 

The actual depth dependence of density and gravity, inferred from seismic travel times (see Adams–Williamson equation), is shown in the graphs below.

Local topography and geology

edit

Local differences in topography (such as the presence of mountains), geology (such as the density of rocks in the vicinity), and deeper tectonic structure cause local and regional differences in the Earth's gravitational field, known as gravity anomalies.[16] Some of these anomalies can be very extensive, resulting in bulges in sea level, and throwing pendulum clocks out of synchronisation.

The study of these anomalies forms the basis of gravitational geophysics. The fluctuations are measured with highly sensitive gravimeters, the effect of topography and other known factors is subtracted, and from the resulting data conclusions are drawn. Such techniques are now used by prospectors to find oil and mineral deposits. Denser rocks (often containing mineral ores) cause higher than normal local gravitational fields on the Earth's surface. Less dense sedimentary rocks cause the opposite.

 
A map of recent volcanic activity and ridge spreading. The areas where NASA GRACE measured gravity to be stronger than the theoretical gravity have a strong correlation with the positions of the volcanic activity and ridge spreading.

There is a strong correlation between the gravity derivation map of earth from NASA GRACE with positions of recent volcanic activity, ridge spreading and volcanos: these regions have a stronger gravitation than theoretical predictions.

Other factors

edit

In air or water, objects experience a supporting buoyancy force which reduces the apparent strength of gravity (as measured by an object's weight). The magnitude of the effect depends on the air density (and hence air pressure) or the water density respectively; see Apparent weight for details.

The gravitational effects of the Moon and the Sun (also the cause of the tides) have a very small effect on the apparent strength of Earth's gravity, depending on their relative positions; typical variations are 2 μm/s2 (0.2 mGal) over the course of a day.

Direction

edit
 
A plumb bob determines the local vertical direction

Gravity acceleration is a vector quantity, with direction in addition to magnitude. In a spherically symmetric Earth, gravity would point directly towards the sphere's centre. As the Earth's figure is slightly flatter, there are consequently significant deviations in the direction of gravity: essentially the difference between geodetic latitude and geocentric latitude. Smaller deviations, called vertical deflection, are caused by local mass anomalies, such as mountains.

Comparative values worldwide

edit

Tools exist for calculating the strength of gravity at various cities around the world.[17] The effect of latitude can be clearly seen with gravity in high-latitude cities: Anchorage (9.826 m/s2), Helsinki (9.825 m/s2), being about 0.5% greater than that in cities near the equator: Kuala Lumpur (9.776 m/s2). The effect of altitude can be seen in Mexico City (9.776 m/s2; altitude 2,240 metres (7,350 ft)), and by comparing Denver (9.798 m/s2; 1,616 metres (5,302 ft)) with Washington, D.C. (9.801 m/s2; 30 metres (98 ft)), both of which are near 39° N. Measured values can be obtained from Physical and Mathematical Tables by T.M. Yarwood and F. Castle, Macmillan, revised edition 1970.[18]

Acceleration due to gravity in various cities
Location m/s2 ft/s2 Location m/s2 ft/s2 Location m/s2 ft/s2 Location m/s2 ft/s2
Anchorage 9.826 32.24 Helsinki 9.825 32.23 Oslo 9.825 32.23 Copenhagen 9.821 32.22
Stockholm 9.818 32.21 Manchester 9.818 32.21 Amsterdam 9.817 32.21 Kotagiri 9.817 32.21
Birmingham 9.817 32.21 London 9.816 32.20 Brussels 9.815 32.20 Frankfurt 9.814 32.20
Seattle 9.811 32.19 Paris 9.809 32.18 Montréal 9.809 32.18 Vancouver 9.809 32.18
Istanbul 9.808 32.18 Toronto 9.807 32.18 Zurich 9.807 32.18 Ottawa 9.806 32.17
Skopje 9.804 32.17 Chicago 9.804 32.17 Rome 9.803 32.16 Wellington 9.803 32.16
New York City 9.802 32.16 Lisbon 9.801 32.16 Washington, D.C. 9.801 32.16 Athens 9.800 32.15
Madrid 9.800 32.15 Melbourne 9.800 32.15 Auckland 9.799 32.15 Denver 9.798 32.15
Tokyo 9.798 32.15 Buenos Aires 9.797 32.14 Sydney 9.797 32.14 Nicosia 9.797 32.14
Los Angeles 9.796 32.14 Cape Town 9.796 32.14 Perth 9.794 32.13 Kuwait City 9.792 32.13
Taipei 9.790 32.12 Rio de Janeiro 9.788 32.11 Havana 9.786 32.11 Kolkata 9.785 32.10
Hong Kong 9.785 32.10 Bangkok 9.780 32.09 Manila 9.780 32.09 Jakarta 9.777 32.08
Kuala Lumpur 9.776 32.07 Singapore 9.776 32.07 Mexico City 9.776 32.07 Kandy 9.775 32.07

Mathematical models

edit

If the terrain is at sea level, we can estimate, for the Geodetic Reference System 1980,  , the acceleration at latitude  :

 

This is the International Gravity Formula 1967, the 1967 Geodetic Reference System Formula, Helmert's equation or Clairaut's formula.[19]

An alternative formula for g as a function of latitude is the WGS (World Geodetic System) 84 Ellipsoidal Gravity Formula:[20]

 

where

  •   are the equatorial and polar semi-axes, respectively;
  •   is the spheroid's eccentricity, squared;
  •   is the defined gravity at the equator and poles, respectively;
  •   (formula constant);

then, where  ,[20]

 

where the semi-axes of the earth are:

 
 

The difference between the WGS-84 formula and Helmert's equation is less than 0.68 μm·s?2.

Further reductions are applied to obtain gravity anomalies (see: Gravity anomaly#Computation).

Estimating g from the law of universal gravitation

edit

From the law of universal gravitation, the force on a body acted upon by Earth's gravitational force is given by

 

where r is the distance between the centre of the Earth and the body (see below), and here we take   to be the mass of the Earth and m to be the mass of the body.

Additionally, Newton's second law, F = ma, where m is mass and a is acceleration, here tells us that

 

Comparing the two formulas it is seen that:

 

So, to find the acceleration due to gravity at sea level, substitute the values of the gravitational constant, G, the Earth's mass (in kilograms), m1, and the Earth's radius (in metres), r, to obtain the value of g:[21]

 

This formula only works because of the mathematical fact that the gravity of a uniform spherical body, as measured on or above its surface, is the same as if all its mass were concentrated at a point at its centre. This is what allows us to use the Earth's radius for r.

The value obtained agrees approximately with the measured value of g. The difference may be attributed to several factors, mentioned above under "Variation in magnitude":

  • The Earth is not homogeneous
  • The Earth is not a perfect sphere, and an average value must be used for its radius
  • This calculated value of g only includes true gravity. It does not include the reduction of constraint force that we perceive as a reduction of gravity due to the rotation of Earth, and some of gravity being counteracted by centrifugal force.

There are significant uncertainties in the values of r and m1 as used in this calculation, and the value of G is also rather difficult to measure precisely.

If G, g and r are known then a reverse calculation will give an estimate of the mass of the Earth. This method was used by Henry Cavendish.

Measurement

edit

The measurement of Earth's gravity is called gravimetry.

Satellite measurements

edit
 
Gravity anomaly map from GRACE

Currently, the static and time-variable Earth's gravity field parameters are determined using modern satellite missions, such as GOCE, CHAMP, Swarm, GRACE and GRACE-FO.[22][23] The lowest-degree parameters, including the Earth's oblateness and geocenter motion are best determined from satellite laser ranging.[24]

Large-scale gravity anomalies can be detected from space, as a by-product of satellite gravity missions, e.g., GOCE. These satellite missions aim at the recovery of a detailed gravity field model of the Earth, typically presented in the form of a spherical-harmonic expansion of the Earth's gravitational potential, but alternative presentations, such as maps of geoid undulations or gravity anomalies, are also produced.

The Gravity Recovery and Climate Experiment (GRACE) consisted of two satellites that detected gravitational changes across the Earth. Also these changes could be presented as gravity anomaly temporal variations. The Gravity Recovery and Interior Laboratory (GRAIL) also consisted of two spacecraft orbiting the Moon, which orbited for three years before their deorbit in 2015.

See also

edit

References

edit
  1. ^ NASA/JPL/University of Texas Center for Space Research. "PIA12146: GRACE Global Gravity Animation". Photojournal. NASA Jet Propulsion Laboratory. Retrieved 30 December 2013.
  2. ^ a b Boynton, Richard (2001). "Precise Measurement of Mass" (PDF). Sawe Paper No. 3147. Arlington, Texas: S.A.W.E., Inc. Archived from the original (PDF) on 27 February 2007. Retrieved 22 December 2023.
  3. ^ Hofmann-Wellenhof, B.; Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer. ISBN 978-3-211-33544-4. § 2.1: "The total force acting on a body at rest on the earth's surface is the resultant of gravitational force and the centrifugal force of the earth's rotation and is called gravity."
  4. ^ Bureau International des Poids et Mesures (1901). "Déclaration relative à l'unité de masse et à la définition du poids; valeur conventionnelle de gn". Comptes Rendus des Séances de la Troisième Conférence· Générale des Poids et Mesures (in French). Paris: Gauthier-Villars. p. 68. Le nombre adopté dans le Service international des Poids et Mesures pour la valeur de l'accélération normale de la pesanteur est 980,665 cm/sec2, nombre sanctionné déjà par quelques législations. Déclaration relative à l'unité de masse et à la définition du poids; valeur conventionnelle de gn.
  5. ^ Moritz, Helmut (2000). "Geodetic Reference System 1980". Journal of Geodesy. 74 (1): 128–133. doi:10.1007/s001900050278. S2CID 195290884. Retrieved 2025-08-05. γe = 9.780 326 7715 m/s2 normal gravity at equator
  6. ^ Hirt, Christian; Claessens, Sten; Fecher, Thomas; Kuhn, Michael; Pail, Roland; Rexer, Moritz (August 28, 2013). "New ultrahigh-resolution picture of Earth's gravity field". Geophysical Research Letters. 40 (16): 4279–4283. Bibcode:2013GeoRL..40.4279H. doi:10.1002/grl.50838. hdl:20.500.11937/46786. S2CID 54867946.
  7. ^ "Wolfram|Alpha Gravity in Kuala Lumpur", Wolfram Alpha, accessed November 2020
  8. ^ Terry Quinn (2011). From Artefacts to Atoms: The BIPM and the Search for Ultimate Measurement Standards. Oxford University Press. p. 127. ISBN 978-0-19-530786-3.
  9. ^ Resolution of the 3rd CGPM (1901), page 70 (in cm/s2). BIPM – Resolution of the 3rd CGPM
  10. ^ "Curious About Astronomy?". Cornell University. Archived from the original on 28 July 2013. Retrieved 22 December 2023.
  11. ^ "I feel 'lighter' when up a mountain but am I?", National Physical Laboratory FAQ
  12. ^ "The G's in the Machine" Archived 2025-08-05 at the Wayback Machine, NASA, see "Editor's note #2"
  13. ^ a b A. M. Dziewonski, D. L. Anderson (1981). "Preliminary reference Earth model" (PDF). Physics of the Earth and Planetary Interiors. 25 (4): 297–356. Bibcode:1981PEPI...25..297D. doi:10.1016/0031-9201(81)90046-7. ISSN 0031-9201.
  14. ^ Tipler, Paul A. (1999). Physics for scientists and engineers (4th ed.). New York: W.H. Freeman/Worth Publishers. pp. 336–337. ISBN 9781572594913.
  15. ^ Weinberg, Steven (1972). Gravitation and cosmology. John Wiley & Sons. ISBN 9780471925675.
  16. ^ Watts, A. B.; Daly, S. F. (May 1981). "Long wavelength gravity and topography anomalies". Annual Review of Earth and Planetary Sciences. 9: 415–418. Bibcode:1981AREPS...9..415W. doi:10.1146/annurev.ea.09.050181.002215.
  17. ^ Gravitational Fields Widget as of Oct 25th, 2012WolframAlpha
  18. ^ T.M. Yarwood and F. Castle, Physical and Mathematical Tables, revised edition, Macmillan and Co LTD, London and Basingstoke, Printed in Great Britain by The University Press, Glasgow, 1970, pp. 22 & 23.
  19. ^ International Gravity formula Archived 2025-08-05 at the Wayback Machine
  20. ^ a b "Department of Defense World Geodetic System 1984 – Its Definition and Relationships with Local Geodetic Systems,NIMA TR8350.2, 3rd ed., Tbl. 3.4, Eq. 4-1" (PDF). Archived from the original (PDF) on 2025-08-05. Retrieved 2025-08-05.
  21. ^ "Gravitation". www.ncert.nic. Retrieved 2025-08-05.
  22. ^ Meyer, Ulrich; Sosnica, Krzysztof; Arnold, Daniel; Dahle, Christoph; Thaller, Daniela; Dach, Rolf; J?ggi, Adrian (22 April 2019). "SLR, GRACE and Swarm Gravity Field Determination and Combination". Remote Sensing. 11 (8): 956. Bibcode:2019RemS...11..956M. doi:10.3390/rs11080956. hdl:10281/240694.
  23. ^ Tapley, Byron D.; Watkins, Michael M.; Flechtner, Frank; Reigber, Christoph; Bettadpur, Srinivas; Rodell, Matthew; Sasgen, Ingo; Famiglietti, James S.; Landerer, Felix W.; Chambers, Don P.; Reager, John T.; Gardner, Alex S.; Save, Himanshu; Ivins, Erik R.; Swenson, Sean C.; Boening, Carmen; Dahle, Christoph; Wiese, David N.; Dobslaw, Henryk; Tamisiea, Mark E.; Velicogna, Isabella (May 2019). "Contributions of GRACE to understanding climate change". Nature Climate Change. 9 (5): 358–369. Bibcode:2019NatCC...9..358T. doi:10.1038/s41558-019-0456-2. PMC 6750016. PMID 31534490.
  24. ^ So?nica, Krzysztof; J?ggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf (October 2015). "Time variable Earth's gravity field from SLR satellites". Journal of Geodesy. 89 (10): 945–960. Bibcode:2015JGeod..89..945S. doi:10.1007/s00190-015-0825-1.
edit
老人手抖是什么病的预兆 脾脏结节一般是什么病 耵聍是什么 身份证最后一位代表什么 政治家是什么意思
一路繁花的意思是什么 卤肉是什么肉 开放性骨折是什么意思 公开课是什么意思 葡萄糖是什么意思
金项链断了有什么预兆 dos是什么 花椒木有什么作用与功效 胃疼适合吃什么食物 亲夫是什么意思
人丝是什么面料 连翘败毒丸的功效与作用是什么 甘耳朵旁什么字 一感冒就咳嗽是什么原因 科举制什么时候废除
脑血流图能检查出什么hcv8jop2ns8r.cn 兔子能吃什么水果sanhestory.com 舌苔厚白湿气重吃什么药hcv9jop2ns4r.cn 才美不外见的见是什么意思hcv7jop5ns1r.cn 血糖高可以喝什么粥hcv9jop7ns4r.cn
金鸡独立什么意思hcv7jop6ns2r.cn 解酒喝什么饮料hcv9jop2ns4r.cn 蜈蚣长什么样hcv9jop0ns1r.cn 角的大小与什么有关与什么无关hcv9jop7ns5r.cn 尿路结石吃什么药hcv8jop3ns4r.cn
观音菩萨代表什么生肖hcv7jop6ns9r.cn 梦见水果是什么意思hcv8jop7ns8r.cn 红豆大红豆芋头是什么歌adwl56.com 胃角在什么位置图片hcv8jop5ns5r.cn 空调干燥是什么意思1949doufunao.com
石榴木命是什么意思xscnpatent.com 泌乳素是什么意思hcv9jop4ns2r.cn 膀胱不充盈什么意思hcv7jop6ns9r.cn 卫生湿巾是干什么用的hcv8jop3ns5r.cn 13楼五行属什么hcv9jop3ns2r.cn
百度